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Abstract

Computation of interlaminar stresses from the higher-order shear and normal deformable beam

theory and the refined zigzag theory was performed using the Sinc method based on Interpola-

tion of Highest Derivative. The Sinc method based on Interpolation of Highest Derivative was

proposed as an efficient method for determining through-the-thickness variations of interlaminar

stresses from one- and two-dimensional analysis by integration of the equilibrium equations of

three-dimensional elasticity. However, the use of traditional equivalent single layer theories often

results in inaccuracies near the boundaries and when the lamina have extremely large differences in

material properties. Interlaminar stresses in symmetric cross-ply laminated beams were obtained

by solving the higher-order shear and normal deformable beam theory and the refined zigzag the-

ory with the Sinc method based on Interpolation of Highest Derivative. Interlaminar stresses and

bending stresses from the present approach were compared with a detailed finite element solu-

tion obtained by ABAQUS/Standard. The results illustrate the ease with which the Sinc method

based on Interpolation of Highest Derivative can be used to obtain the through-the-thickness dis-

tributions of interlaminar stresses from the beam theories. Moreover, the results indicate that

the refined zigzag theory is a substantial improvement over the Timoshenko beam theory due to

the piecewise continuous displacement field which more accurately represents interlaminar discon-

tinuities in the strain field. The higher-order shear and normal deformable beam theory more

accurately captures the interlaminar stresses at the ends of the beam because it allows transverse

normal strain. However, the continuous nature of the displacement field requires a large number of

monomial terms before the interlaminar stresses are computed as accurately as the refined zigzag

theory.
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1 Introdction

Composite materials remain a topic of considerable interest to researchers due to their vulnerability

to impact loading. Because of interlaminar bonding imperfections, delamination can be initiated by

interlaminar stresses. This effect is amplified in sandwich composites subjected to compressive loads

because the facesheets tend to buckle, accentuating the risk of delamination growth. The delami-

nation can eventually result in ultimate failure of the composite. Modern composite failure criteria

incorporate the interlaminar stresses. Therefore, accurate determination of interlaminar stresses is a

topic of considerable interest in the research community. We will recapitulate some of the significant

developments in this area. The state of interlaminar stress computation has been reviewed extensively

by Kapania and Raciti [1] and Kant and Swaminathan [2].

Reddy [3] provided an alternative to the use of constitutive relations to obtain transverse normal

and shear stresses by integrating the equilibrium equations of 3D elasticity directly. However, this

technique requires in-plane derivatives of in-plane strains, a feature not explicitly available from equiv-

alent single layer (ESL) theories such as classical lamination or first-order shear deformable theories

in finite element implementation. For the transverse shear stress components, the equilibrium inte-

gration approach necessitates the first derivatives of in-plane strains. For the transverse normal stress

component, the second derivatives of in-plane strains are required.

A significant amount of research has been conducted in the area of developing post-processing

schemes to be used with commercial finite element software to obtain the transverse stresses. Lajczok

[4] used a finite difference scheme to compute the higher derivatives of in-plane strains necessary

within the equilibrium equation approach. Byun and Kapania [5] used Chebyshev and other orthogonal

polynomials to interpolate the displacements and compute the higher derivatives of in-plane strain. Lee

and Lee [6] developed a post-processing scheme for determining the transverse stresses in geometrically

nonlinear composites for cross-ply, symmetric composites and sandwich composites with laminated

facesheets and isotropic core material. Roos, Kress, and Ermanni [7] developed a post-processing

method for determining the transverse normal stress component in doubly-curved, laminated, shell

elements in commercial finite element codes. Noor and Malik [8] used a two-stage procedure in which

first-order shear deformable theory (FSDT) was used to compute in-plane stresses in stage one. In

stage two, integration of the equilibrium equations of 3D elasticity is preformed to determine through-

the-thickness distributions of stress. An elasticity model is used to update the in-plane stresses. Stage

two is repeated until a convergence criteria on the transverse normal stress is satisfied. Tessler and

Riggs [9] developed a variational smoothing algorithm to accurately obtain the higher order derivatives
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and achieve the interlaminar stresses. Tessler et al. [10] used the “Smoothing Element Analysis” for

improving the accuracy of finite element stresses for general application and not just for interlaminar

stresses; however, the approach is essentially a second finite element analysis.

Recently, Slemp and Kapania [11, 12] proposed using the Sinc Method based on Interpolation of

Highest Derivative (SIHD) for problems in which the interlaminar stresses are desired. SIHD was

developed by Li and Wu [13] as a numerical method for solving of one- and two-dimensional boundary

value problems. The method is substantially different from traditional methods such as Ritz method

or finite element method in which approximate the unknown function using some global or local basis

and the basis is differentiated to obtain the derivatives. With the SIHD method, the highest derivative

of interest is approximated using a Sinc basis. The method utilizes the numerical indefinite integration

based on the double exponential transformation proposed by Muhammad and Mori [14] to obtain the

lower derivatives and unknown function. The concept is that by using the process of integration as

appose to differentiation, the highest-order derivatives would be very accurate.

Li and Wu [13] illustrated that the method is very accurate and has very good convergence proper-

ties for one- and two-dimensional boundary value problems involving only Dirichlet boundary condi-

tions. In [11], Slemp and Kapania assessed the accuracy of the method was examined for the analysis

of interlaminar stresses in composite beams and plates. Numerical results were compared against

the analytic solution for the problem of a simply-supported Timoshenko beam and for a simply-

supported classical laminated composite plate. The method was shown to exhibit excellent accuracy

and convergence properties for the displacements, stresses, and interlaminar stresses by using the

through-the-thickness integration approach.

In the next study, Slemp and Kapania used the SIHD method as a tool to solve the one-dimensional

beam equations for the Timoshenko (FSDT) and the Bickford beam composite ESL theories. The

numerical results for the interlaminar stresses were compared against a 3D finite element solution

to assess the accuracy of the one-dimensional theory as compared with elasticity. The results for

symmetric cross-ply and functionally graded composites under uniform loading indicated that the

stresses compare well against 3D elasticity through most of the length of the beam; however, in the

vicinity of the boundary, the results were poor. This error was attributed to the three-dimensional

effects in the vicinity of the boundary that may not be captured by the one-dimensional ESL theories.

The present study attempts to examine two refined beam theories in order address the viability of

these methods as a low cost option for accurately obtaining interlaminar stresses. The present study

also utilizes the SIHD method to solve the boundary value problem to once again illustrate the success

with which this approach can be used to obtain the interlaminar stresses without post processing to

3



compute the necessary strain derivatives.

There are two philosophies for improving results from ESL beam theories. First, the order of

approximation for the displacement fields may be increased. Both the in-plane displacement and the

transverse deflection fields could take a higher-order polynomial approximation. Such an approach is

typically referred to as a higher-order shear and normal deformable theory (HOSNDT). HOSNDTs

have been used by many authors to analyze composite laminates and functionally graded materials.

The higher-order shear and normal deformable theories as derived by Batra [15] allows users the

ability to specify the order of the assumed displacement field. Xiao et al. [16, 17] used MLPG with

radial basis functions to analyze both thick isotropic and thick composite plates. Their results showed

that the HOSNDT produces excellent through-the-thickness longitudinal stress variations for thick

laminates. Transverse normal and transverse shear stresses in some cross-ply laminates computed by

the constitutive equations were accurate using as low as a fifth-order theory. These theories have also

been used to study functionally graded materials. Qian, Batra, and Chen [18] used HOSNDT to study

functionally graded plates comprised of aluminum and zirconia or aluminum and a another ceramic

such as SiC.

A central drawback of the HOSNDT is the inability of continuous functions to approximate discon-

tinuities. It is this philosophy that spurred the development of the so called layer-wise theories [19].

In layer-wise theories, the displacement is piecewise linear through the thickness. A new displacement

degree of freedom is introduced for each layer and continuity of tractions between each layer is imposed.

While the methods are very accurate, even comparable to three-dimensional elasticity [19, 20], the in-

creased number of kinematic degrees-of-freedom becomes a significant drawback when a laminate has

many layers. The “zigzag” theories attempt to introduce the piecewise linear displacement while keep-

ing the number of degrees-of-freedom constant with increasing number of layers. Because the slope of

the displacements are discontinuous, the strains need not be continuous through the thickness allowing

the stresses, if desired, to satisfy the traction continuity between adhesively bonded layers. Early work

by Di Sciuva [21] and Murakami [22] suggested displacements that satisfied the interlaminar traction

continuity. However, the Di Sciuva theory suffers from the inability to find physical significance in the

computed shear stress. The area integral of shear stress does not equal the shear force applied.

Averill [23] modified Di Sciuva’s theory by introducing a penalty term in the variational principal to

enforce interlaminar shear continuity. However, the theory suffers in much the same way as Di Sciuva.

Averill resolves the issue at the cost of variational consistency of the boundary conditions. Recently,

Tessler, Di Sciuva, and Gherlone [24, 20] presented a variationally consistent refined zigzag theory in

which interlaminar shear continuity was not enforced. However, the theory serves as a substantial
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improvement over the Timoshenko beam theory or the FSDT plate theory. Tessler, Di Sciuva, and

Gherlone [20] compares transverse shear stresses from the constitutive relation with Pagano’s elasticity

solution [25]. Tessler, Di Sciuva, and Gherlone also obtained interlaminar stresses by integration of

the equations of three dimensional elasticity and showed that they very accurately approximated the

three-dimensional elasticity solution [26].

In this paper, the cross-ply laminated beams are analyzed by SIHD using the HOSNDT and Tessler’s

refined zigzag theory. The interlaminar stresses are computed using the equilibrium integration tech-

nique and compared with a finite element solution. The remainder of this paper is arranged as follows:

The higher-oder shear and normal deformable theory for laminated beams and the refined zigzag theory

are presented in Sections 2 and 3 respectively with details provided for computing interlaminar stresses

from the two theories. Two numerical examples are presented in Section 4. The paper concludes with

a brief conclusion.

2 Higher-Order Shear and Normal Deformable Theory for

Beams

The development of the higher-order shear and normal deformable beam theory (HOSNDT) following

the general approach of Batra [15] is reviewed below. First, consider a beam with rectangular cross-

section as shown in Fig. 1. Because the has small width (b << a), the problem can be reduced to

consider only the displacement field U and W. Begin by assuming a displacement field of the form,

n.

U(x, z) = E ziui (x) ,
i=0	

(1)n,,,

W (x, z) = E ziwi (x),
i=0

where U and W are the longitudinal displacement and the transverse deflection respectively, and where

the domain is x E [0, a] and z E [ — h/2, h/2]. Accordingly, the strains are

∂U n.

Eyy =	 =
∂x	

ziui,y,

i=0

∂W 
n,,,

Ezz == E(i)zi—1wi,	 (2)∂z
i=0

∂U ∂W 
n.n,,,

γyz = ∂z + ∂x 
=E(i)zi—1ui + E zi wi,y.

i=0	 i=0
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Note that (i ) zi- 1 should be zero for all z when i = 0; however, to avoid further complication by

defining these in a piecewise fashion, the inconsistency is noted textually.

Z ^h/2
hZ	

z

h Y x

b a

Znlay+I
inlay k= nay

Znlay -I k = n ay- 1
Zk

^^ k=2
zl k =1

Figure 1: Definition of beam geometry and coordinate system.

The constitutive law is reduced assuming plane stress in the y direction. Note that for the traditional

ESL beam theories studied in Slemp and Kapania [12], the stress resultants Nyy, Nxy, Myy, Mxy, Pyy,

Pxy, and Qyz were assumed to be zero where these were defined by:

Z{(	 ^/_^/ =
h/2

lNyy, Nxy, Myy, Mxy, Pyy, Pxy, `.(yz} 	 {σyy, σxy, zσyy , zσxy , z3σyy , z3σxy , σyz }dz = 0
-h/2

For this HOSNDT each lamina is assumed to experience plane stress ( b << a) with stress components

σyy = σxy = σyz = 0. Accordingly, the reduced constitutive relation is given by:

Q (k)	 kσxx = Q 11 Exx + Q13 Ezz,

σzz = Q13 Exx + Q̄
(k)k
33 Ezz
	 (3)

σxz =Q̄
(k)
55 γxz

where Q^^ ) is the plane stress reduced stiffness matrix for the kth lamina (See Fig. 1). To obtain

Q^^
)
, in terms of the lamina engineering constants, please refer Reddy [19]. Note, the stiffnesses were

reduced for plan stress about the y axis and not the z axis in this sense.

The governing equations are derived using the principle of virtual work. The internal virtual work

is written as:

SWint = f
n 

σî  
) SE'̂  

)dQ
	

(4)

where repeated index implies summation (where appropriate) and Q is the beams volume. Substituting
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Eqs. (2) and (3) into the internal virtual work and integrating by parts where appropriate yields

fa
SWint = b

J 
h— (T11ij uj,xx + T13ij wj,x) Sui + (T31ij uj,x + T33ij wj) Swi

0

+ (T51ijuj + T53ij wj,x) Sui — (T61ij uj,x + T63ij wj,xx) Swi J 
dx

a	 a
+ b (T11ij uj,x + T13ij wj) Suj 0 

+ b (T61ij uj + T63ij wj,x) Swi 0, (5)

where

n lay

(k
(kT11ij = E Q)

" i+j+1	 i+j+1z	 — zkk+1 ,

#

k=1
i + j + 1

n lay

//T	 E Q 13
)
 li)
	 ^ zk+

j

31ij =
i+ 	 i+j

1 — zk ,

k=1
i + j

n lay	

//T51ij = E Q55) lij)
zi+j-1 — zi+j-1"	 #
k+

i
k
1

k=1
+

n lay

//T61ij = EQ55) lj ) ^ z jk+1
i+ — zi+j

k

k=1
+ j

"	 #

	

n lay	

//	 zi+j	 i-1 — z +j-1

E Q13) l^) k+1T13ij =	 i +j,

	

k=1	
"	 #

	

n lay	 zi+j	 Z—1 — i+j-1
T33ij = E Q33) (ij) 

k+
i + j —

k
1

	

k=1	
"	 #n lay

// 	
i+j	 i+j

T	 E Q55
)
 l2) 

zk+1 — zk

	

53ij =	 ,
i + j

k=1	
"	 #nlay	 i+j — z k+1	 i+j+1

T63ij = E Q 
(k) zk+1
55	 i + j+ 1

k=1

nlay is the total number of composite layers, and repeated index of i and j implies summation over

the terms in that index. For T11ij, T13ij, T51ij, and T53ij, i = 0, 1, 2,...nu ; for T31ij, T33ij, T61ij, T63ij,

i = 0, 1, 2,...nw ; for T11ij, T31ij, T51ij, and T61ij, j = 0, 1, 2, ...nu; for T13ij, T33ij, T53ij, and T63ij,

j = 0, 1, 2,...nw . Also, note that if a zero-denominator is encountered in any Tijkl, these terms are set

to zero. The zero-denominator only results from differentiation of a zi when i = 0. Therefore, these

terms are zero and no denominator is computed.

The external virtual work for a beam under the simply-supported condition with transverse pressure

loading q (x) applied on the top surface of the beam (z = h/2) has the form:

SWext = f
a 

q(x)SW(x, h/2)dx = f
a
 —q(x)E(h/2) iSwidx

i=0
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The variational statement,

b
 f

a
[ — (—T11ij uj,xx — T13ij wj,x + T51ij uj + T53ij wj,x) Sui

0

— (+T31ijuj, + T33ij wj — T61ij uj,x — T63ij wj,xx + q (x)(h/2) i) Swi
l
dx

a	 a
— b (T11ij uj,x + T13ij wj) Sui a — b (T61ij uj + T63ij wj,x) Swi

 
0 = 0 , (6)

governs equilibrium and boundary conditions. Because the variations, Sui and Swi , are arbitrary the

boundary value problem may be written by the following Euler equations of equilibrium:

Sui :	 T11ij uj,xx + T13ij wj,x — T51ij uj — T53ij wj,x = 0	 (7)

Swi :	 — T31ijuj,x —T33ij wj + T61ijuj,x + T63ij wj,xx = q(x)(h/2) i 	(8)

For the simply support condition, the kinematics require W (0, z) = 0 and W (a, z) = 0. This is imposed

by constraining all wi at the edges. At the edge x = 0, a point constraint is applied to the U degree

of freedom ( U (0, 0) = 0). This is satisfied by setting ui (0) = 0 for i = 0, 2, 4,.. . . No constraints on the

ui for i = 1, 3, 5,... were imposed. Thus the complete set of essential and natural boundary conditions

used for the analysis are:

wi (0) = 0 (i = 0 , 1, 2, ..., nw)

ui (0) = 0 (i =0 , 2 , 4,.. . )

(T11ij uj,x + T13ij w
j) x=0

=0 (i =1 , 3 , 5,.. . )	 (9)

wi (a) = 0 (i = 0, 1, 2, ..., nw)

(T11ij uj,x + T13ij wj)

	
=0 (i = 0, 1, 2,..., n.,)

x=a

where repeated index implies summation over all elements in that index.

Note that by selecting the order of polynomial expressions for U and W, n., and nw respectively,

the governing equations and boundary conditions are given by Eqs. (7) and (8). The boundary value

problem may be solved using the SIHD method in an identical fashion to Slemp and Kapania [12].

While we omit the details, it is important to note that by using SIHD to solve the boundary value

problems all derivatives up to ui,xxx (x) and wi,xx are known as a by-product of the analysis and no

additional post-processing algorithm needs to be used to find these higher order derivatives.

The interlaminar stresses can be found by integrating the equations of 2D elasticity through the
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thickness of the kth lamina layer ( zk < z < zk+1).

σ^z) _ — f
z

k 
∂∂x

x

 

(k)) 
dz + G(k)	 (10)

σ^z) _ — f
z

k 
∂∂x

z

 

(k)) 
dz + H(k)	 (11)

Note that G(k) , F (k) , and H(k) are functions of x that may be determined from traction equilibrium

between the layer boundaries. First, the transverse shear stresses are considered. Substituting the

Hooke’s law and strain-displacement relations into Eq. (9), the transverse shear stress, σX z)
, is expressed

by:	 "	 #
z

σ^z)) _ —
 

f Q ii) E(ziui,xx) + Q i3) E (izi—1wi,x) dz + G(k)	 (12)
k	 i=0	 i=1

Performing the integration through the layer thickness, this is expressed by:

" nu
 

zi+1 — zi+1	 nw

σ^z) _ — Q̄1	13
k U.

	+ Q13)	 ((z — zk )wi,x) + σ^z) (x, zk )	 (13)
i=0	

i + 1	 i=1

Differentiating with respect to x and substituting into Eq. (10) yields:

"fz 	 nu
 

zi+1 — zi+1	 nw

σ(z) _ —	 Q11 
E

k ui,xxx — Q13 E ((z — zk )wi xx) + σxz,x (x,zk) dz + H(k)

k	 i=0	
i + 1	 i=1

(14)

Evaluating the integration on a layer-by-layer basis through the lamina thickness yields:

"	 !	 #	 "
zi+2 — zi+2 	 zi+1 z — z	 zi+1 — zi+1

σ^z) _ Q11	
k — k (	 k) u	

nw

	

i,xxx +Q13 
E
	 k — zk (z — zk) wi,xx

i

Enu

=0	
(i + 1)(i + 2)	 i + 1	 i=1	

i + 1

— σ^z) (x,zk ) (z — zk ) + σ^z
) (x,zk) (15)

Thus the transverse shear and transverse normal stresses can be found from the displacement variables.

The terms σxz (x, zk ), σxz,x (x, zk ), and σzz (x, zk ) are determined by imposing continuity of the tractions

in a layer-by-layer fashion, starting from the bottom free surface.

3 Refined Zigzag Theory for Beam Analysis

The development of the refined zigzag theory for beam analysis, following the approach of Tessler,

Di Sciuva, and Gherlone [20], is reviewed below. Consider the same beam geometry shown in Fig. 1.
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Begin by assuming a displacement field of the form,

U (x,z) = u0 (x) + zθ(x) + O (k) (z),O (x),
(16)

W (x, z) = w0 (x),

where U and W are the longitudinal displacement and the transverse deflections respectively, O(k) (z) is

a piecewise linear function of the thickness coordinate, and the domain is x E [0, a] and z E [— h/2, h/2].

Accordingly, the strains are

^xx (x, z) = u0,x (x) + zθ,x (x) + O(k) (z),O ,x (x),	
(17)

γxz (x, z) = θ (x) + β
(k) (z),O (x) + w0,x (x) ,

where β (k) = O,z
)
. Note that β (k) is a constant within a given layer.

The piecewise linear variations, O(k) is set to zero on the bottom and top surfaces of the beam and

is C0 continuous at the interfaces. Therefore, the distribution over the kth lamina may be written as:

O (k) (z) = β (k) (z — zk) + O
(k-1) (zk)	 (18)

Note that O(k-1) (zk) implies evaluation at zk and not multiplication. Thus determining β(k) , fully

prescribes the displacement field. Rather than prescribing traction continuity between layers, Tessler,

Di Sciuva, and Gherlone [20] requires that the following equation holds:

"-1

Q55) (1+ β(k)) 
= 1 f h/2 dz

(k)	
(19)

h/2 Q55

The assumption is made that each beam layer is in a state of plane stress in the z and y directions.

Thus the bending stiffness, Q̄ ii
)
, and shear stiffnesses, Q55), reduce to the elastic moduli, Ex

(k)
 and

G
(k)
xz , respectively. The governing equation and boundary conditions are derived from the variational

principle (see Tessler, Di Sciuva, and Gherlone [20]). The governing equations are:

Nxx ,x = 0

Mxx , x — Vx = 0
(20)

Vx , x +q = 0

MO,x —VO = 0

10



The kinematic variables are u0 , B, w, and V). The stress resultants are defined by:

Zh/2
{Nxx, Mxx, MO , Vx , VO} =	 {Q^z), Q^z) z, Q^z) φ(k) (z), Q^z) , Q^z)3 (k) }dz. (21)

-h/2

To impose the simply support condition in a similar manner to the HOSNDT formulation, the kinematic

conditions require w0 (0) = 0, w0 (a) = 0, and u0 (0) = 0 with no constraints on u0 (a), V)(0), V) (a), B(0),

and B (a). Thus the complete set of essential and natural boundary conditions are:

w0 (0) = 0, w0 (a) = 0,

u0 (0) = 0, Nxx (a) = 0,

Mxx (0) = 0, Mxx (a) = 0,	 (22)

Vx (0) = 0, Vx (a) = 0,

MO (0) = 0, MO (a) = 0.

For the present study, the SIHD method was used to approximately solve the boundary value

problem. Again the details are omitted (see Slemp and Kapania [12]); however, it should be noted that

doing so provides all derivatives up to u0,xxx, B,xxx, and V),xxx so that exx , xx and its lower derivatives

are known across the beam without post-processing.

The interlaminar stresses can be derived from integration of 2D elasticity in a similar fashion to the

HOSNDT. The following relations for transverse shear and transverse normal stresses were obtained.

Q^z = -(z - zk) 

[
u0,xx - V),xx 

(
3 (k) zk

 + 
φ(k-1)
	 ) 

J
(zk) + 

z2

 2 
zk
 

(
B,xx + V) xx3 (k)

)

 + Q^ z) (x, zk) (23)

(
z2 - z2 	

I

	
l lQ^z	

2
^	 k -z k (z - zk) 

[
u0,xxx - V),xxx 

(
3 (k) zk

 
-
 
φ(k-1) (zk)/J

- zk z2
k (z - z+ (z3

	

6	
-	 2 

k) I (
B,xxx + V) xxx3 (k)

) - Q^z^x (x, zk ) (z - zk ) + Q^z) (x, zk) (24)

The transverse shear and transverse normal stresses can be found from the displacement variables.

The terms Qxz (x, zk), Qxz,x(x, zk ), and Qzz(x, zk ) determined from traction equilibrium between the

layer boundaries.
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4 Numerical solution of HOSNDT and Refined Zigzag Theory

with SIHD

The three-layered, [0/90/0], graphite/epoxy laminated beams of Slemp and Kapania [12] was revisited

using the HOSNDT and the refined zigzag. This material configuration was referred to as Material A.

The properties for this beam are give Table 1. A second beam was taken with Material B, a fictitious

lamina with extremely different shear moduli for G13 and G23. The properties are given in Table 1.

For each case the length-to-thickness ratio was a/h = 5 where a and h are the length and thickness of

the beam respectively.

Table 1: Material properties for a graphite/epoxy lamina (A) and a fictitious orthotropic lamina with
extremely different shear moduli (B).

A B
E1 [Msi/GPa] 24.9/ 172 24.9/ 172
E2 [Msi/GPa] 1.00/6.89 1.00/6.89
G12, G13 [Msi / GPa] 0.50/3.45 14.5/ 100
G23 [Msi / GPa] 0.20/ 1.38 0.145/ 1
V12 0.25 0.25

4.1 Material A

Eight-node, linear, reduced-integration, brick elements (C3D8R) in ABAQUS/Standard were used

to obtain an approximate three-dimensional elasticity solution for the beams. The element size was

reduced until a similar solution from two successively fine meshes was obtained. The converged mesh

used a total of 140 elements along the length dimension, 49 elements through the thickness and 26

elements across the width of the beam. The elements were biased toward the ends of the beam to

obtain a high level of mesh density near the boundaries. The simply-supported boundary condition

was enforced at both edges by constraining all nodes on the transverse faces from u3 translation.

The mid-plane’s intersection with the transverse face was constrained in the u1 direction, allowing

rotation of the simply-supported faces. The central node on a transverse edge was constrained against

u2 translation, preventing a rigid body mode while allowing Poisson contraction everywhere so no

artificial loads are introduced by the boundary conditions. A uniformly distributed load was applied

to the top surface of the beam.

An approximate solution to the HOSNDT and the refined zigzag beam theories was obtained using

the SIHD method as implemented in Slemp and Kapania [12]. The HOSNDT was solved using SIHD

implemented in Fortran 90. The Sinc mesh size was set by specifying the Sinc span to be α = 2 . 0 (see
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Slemp and Kapania [12]). A total of 81 (N = 40) Sinc points were used to obtain a converged solution.

The zigzag theory was implemented in MATLAB using 201 (N = 100) Sinc points. In this case the

Sinc mesh size was also set by specifying the Sinc span to be a = 2 . 0.

In Fig. 2, the longitudinal and transverse normal stress components obtained by Slemp and Kapania

[12] using the Bickford and Timoshenko beam theories, the HOSNDT with n" = 5 and 10 and n,,, = 3,

and the refined zigzag theory of Tessler, Di Sciuva, and Gherlone [20] were compared with the 3D

FEM solution.

Figure 2: Longitudinal and transverse normal stress components at x = 0 . 5 for simply supported
laminated beam with Material A. The Timoshenko, Bickford, and FEM results are from Slemp and
Kapania [12].

The transverse normal stress was very accurately approximated by each of the approaches and

there is little benefit to the additional complexity of the HOSNDT or the zigzag theory. However, the

benefit is apparent with the in-plane longitudinal stress. The Bickford theory performs very well at

capturing the trend of the curve; however, at the material interface it is erroneous. The zigzag theory,

while it predicts only linear through lamina distributions of in-plane stress, it matches very well with

the FEA for the lamina interfacial stresses. The zigzag theory is superior to the Timoshenko beam

theory and performs better than the Bickford theory even though it lacks the ability to produce the

curved through-the-lamina-thickness stress distribution present in this thick laminate.

For the HOSNDT, the increasing order of u displacement appears to push the interfacial longitu-

dinal normal stress toward the FEA results; however, it is only with significant additional unknowns

that similar accuracy as the zigzag theory is achieved.

If Fig. 3, the transverse shear and normal stresses are plotted at the end and near the end of the
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Figure 3: Transverse shear and normal stress components at x = 0, 0 . 1a for simply supported laminated
beam with Material A. The Timoshenko, Bickford, and FEM results are from Slemp and Kapania [12].
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beam. In the previous study [12], it was noted that the edge effects cannot be captured by the ESL

theories for this problem. The refined theories appear to improve substantially the transverse shear

stress at the edge of the beam. The interfacial stress is approximated very well by the HOSNDTs and

the zigzag theory; however, the zigzag theory is unable to capture the stress asymmetry about the

mid-plane (higher transverse normal stress in the top lamina). The HOSNDTs appear to account for

the stress asymmetry quite well; though neither n., = 5 nor n., = 10 (n,,, = 3 for both) is sufficient to

exactly capture the stress distribution.

While the refined theories do a better job particularly for the transverse shear stress at the edge,

none of the present theories capture the transverse normal stress at the boundary very well. The

HOSNDTs improve upon this stress component significantly; however, they appear to oscillate about

the FEA solution. Further increasing the order of the in-plane and transverse deflection profiles do

not significantly improve the results. The HOSNDT suffers from the so called Gibbs phenomenon.

Continuous functions are never able to approximate discontinuities very well.

At 0 . 1a , the refined theories each perform well at capturing both the transverse normal and trans-

verse shear stresses. The refined theories are a substantial improvement over the ESL theories for these

stresses.

If the normal deformability is neglected (i.e. taking n,,, = 0), HOSNDT produces results very

similar to the zigzag theory. It should be noted that the present problem is quite a difficult one in

that the loading is uniform. The edge experiences a sudden drop in applied load. Even the 3D FEM

solution is not plausible because the boundary conditions are not exactly satisfied. The stress should

equal the applied load on the top surface and the derivative of the transverse normal stress with respect

to z should be zero (by 3D equilibrium); however, neither of these are exactly satisfied by the FEA

solution.

4.2 Material B

The fictitious lamina (Material B) was chosen to demonstrate a key short coming of using ESL the-

ories to calculate interlaminar stresses. Namely, computation of interlaminar stresses from the three-

dimensional equilibrium equations of elasticity relies on the accuracy of the in-plane derivatives of

in-plane stresses. However, there are some lamina for which the material properties are so discon-

tinuous that obtaining accurate derivatives of in-plane stresses is not possible. The present example

clearly demonstrates the refined zigzag theories superiority to the Timoshenko beam theory and the

HOSNDT.

15
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Analysis was performed using SIHD with the Timoshenko beam theory, the refined zigzag theory,

and the HOSNDT with n., = 5, 10, and 15 and with n,,, = 3. The Timoshenko beam theory and the

zigzag theory were implemented in MATLAB while the HOSNDT was implemented in Fortran 90. The

results were compared with a two-dimensional plane stress finite element analysis. For the FEA, the

mesh size was decreased until a similar solution was obtained from two successively fine meshes. The

converged mesh size had a total of 200 elements along the length. The elements were biased toward

the ends with a bias ratio of 50. Through the thickness of the top and bottom layer 36 elements were

used which were biased toward the top and bottom respectively. Though the thickness of the middle

lamina, 12 elements were used in a uniformly distributed manner.

The longitudinal and transverse normal stress components for material configuration B were plotted

in Fig. 4. The bending stresses are very accurately predicted by the zigzag theory, nearly indistin-

guishable from the FEM results. Note that the Timoshenko beam theory fails to estimate the bending

stresses. The Timoshenko beam theory prediction for bending stress at the interface is wrong by

about 175 % and about 40 % at the top and bottom surface. The HOSNDT with using ten monomials

approximating the in-plane displacement performs somewhat better; however, at a substantial com-

putational cost. With fifteen monomials, the HOSNDT results approach the accuracy of the zigzag

theory.

5
σ̄xx (0.5a, z)	 σ̄zz (0.5a, z)

FEM - - - Zigzag - o - HOSNDT (nu = 5) - 0. - HOSNDT (nu = 10) - D - HOSNDT (nu = 15)

Figure 4: Longitudinal and transverse normal stress components at x = 0 . 5 for simply supported
laminated beam with Material B.

The transverse shear and normal stresses were plotted in Fig. 5 at the edge of the beam and one-

tenth0of the length of the beam. The transverse shear stress is also very well approximated using

the refined theories; however, the zigzag theories advantage is somewhat less convincing. While the
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Figure 5: Transverse shear and normal stress components at x = 0, 0 . 1a for simply supported laminated
beam with Material B.
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interfacial shear stress is accurately approximated with the zigzag theory, the asymmetry of shear

through the thickness cannot be captured without normal deformability. However, including normal

deformability alone does not grant accuracy for these stress components. Note that with fifteen

monomials approximating the U displacement, the transverse shear component at the lamina interfaces

is still not as accurately computed using the HOSNDT than with the zigzag theory - a piecewise

discontinuous linear theory.

The transverse normal stress component is again inaccurate at the boundary. While introducing

normal deformability is necessary to very accurately capture the stress at one-tenth of the length of

the beam, the transverse normal stress at the edge is not captured very well at all by the theories

studied.

4.3 Summary and Conclusions

In this paper, computation of transverse shear and transverse normal stresses or interlaminar stresses

from refined beam theories was performed using the Sinc method based on Interpolation of Highest

Derivative (SIHD). The higher-order shear and normal deformable beam theory (HOSNDT) and the

refined zigzag theory were introduced. Integration of the equilibrium equations of three-dimensional

elasticity was performed to obtain the transverse normal and transverse shear stress components for

each theory.

The aims of this paper were to determine if the erroneous nature of interlaminar stresses computed

by the Timoshenko and Bickford beam theories could be improved by refining the assumed displacement

field. Like the previous study [12], the results illustrate that the SIHD method can be beneficial for

this type of problem because the higher-order derivatives of the strain needed to perform through the

thickness integration are accurately obtained without post processing. Two material configurations

were considered. First, comparison was made with the material configuration of the previous study

[12] using SIHD and the Timoshenko and Bickford beam theories. A second material configuration

was examined which demonstrated the serious limitations of the traditional ESL theories when the

shear moduli of lamina varies too substantially.

The HOSNDTs were used to illustrate the effects of increasing the order of the assumed displace-

ment field and including the transverse normal strain. However, the present implementation of the

HOSNDT does not allow for discontinuities of the shear strains through the thickness. The numerical

results provide very compelling evidence that the refined zigzag theory provides an excellent way to

introduce a discontinuous displacement field without significant computational costs, and its accuracy

18



benefits substantially. The present results have shown that the refined zigzag theory provides excel-

lent accuracy of the interfacial bending and transverse shear stresses. While the transverse normal

stress was not improved substantially and cannot be accurately predicted without allowing a nonzero

transverse normal strain component, the refined zigzag theory should be used over simple increasing

the order of the in-plane displacement field.
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